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PREFACE

The Agriculture and Resources Inventory Surveys Through Aerospace Remote
Sensing is a 6-year program of research, development, evaluation, and
application of aerospace remote sensing for agricultural resources, which
began in fiscal year 1980. This program is a cooperative effort of the
National Aeronautics and Space Administration, the U.S. Agency for Inter-
national Development, and the U.S. Departments of Agriculture, Commerce,
and the Interior.

The work which is the subject of this document was performed within the
Earth Resources Research Divis;on, Space and Life Sciences Directorate, at the
Lyndon B. Johnson Space Center, National Aeronautics and Space Administration.
Under Contract NAS 9-15800, personnel of Lockheed Engineering and Management
Services Company, Inc., performed the tasks which contributed to the completion
of this research.
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1. INTRODUCTION

1.1 BACKGROUND
This report describes the results of the Domestic Crops and Land Cover classi-
fication and clustering study on area estimation. The objectives of the study
are as follows:
Task 1: To understand the current crop area estimation approach of the Econom-

ics and Statistics Service (ESS) of the U.S. Department of Agriculture
(USDA) in terms of the factors that are likely to influence the bias
and variance of the estimators.

Task 2: To develop and evaluate alternative clustering, classification, and
regression methods that could be inserted into the current ESS
estimation procedure.

Task 3: To begin studies that may lead to an improved estimation procedure.

Task 1 was intended to support Task 2 by providing a working understanding of
the current ESS crop estimation approach. Such understanding is needed in
designing appropriate experiments for evaluating and comparing alternative
components.

Consideration of these alternative methods in Task 2 was principally motivated
by two factors. First, it was believed that a more theoretically based clus-
tering algorithm would be appropriate. In particular, the CLASSY algorithm
developed at the Lyndon B. Johnson Space Center (JSC) had performed well in
tests and was the candidate clustering replacement. CLASSY is an adaptive max-
imum likelihood clustering algorithm which models the overall data distribution
as a mixture of multivariate normals. In addition to its clustering proper-
ties, CLASSY can also be used to provide direct area estimates. A second fac-
tor was the belief that the Editor procedure should ideally use independent
data sets for developing the regression equation and evaluating area esti-
mates.One way to do this would be to divide the available data into training
and test portions. Alternatively, this could be accomplished by generating
quasi-independent segments for regression using a jackknifing technique. The
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Mean Square Error (MSE) classifier lends itself well to this use, as it makes
no parametric assumptions; thus, there are fewer parameters estimated with the
algorithm, implying more stable parameter estimates. It was felt that, due to
this robust nature, the MSE classifier would be more extendible to an inde-
pendent test set.

1.2 CURRENT USDA PROCEDURE
The current USDA acreage estimation procedure comprises registration and
digitization of ground truth and raw Landsat data, development of an estimator
on the portions of the area of interest for which ground truth is available,
and application of that estimator to the whole area of interest. This study is
concerned with the procedure used in developing the estimator.

The acreage estimation procedure involves the following steps:
a. A registered raw data set for the area of interest for which ground truth

is available is selected. The data could be unitempora1 or mu1titempora1 ,
and, usually, both are studied. The data set is separated by crop type.
It is optional to remove border pixels, poorly registered fields, poorly
reported fields, and pixels with extreme spectral values relative to the
rest of the crop type.

b. Each ground truth crop is clustered separately, yielding a group of
clusters with known cluster labels.

c. Several options are excercised and parameters specified. Among these are:
(1) specifying the minimum and maximum number of clusters per crop type
(2) specifying separability of clusters in spectral space
(3) specifying percent convergence when combining clusters
(4) specifying a priori probabilities
(5) seeding clusters
(6) pooling the resulting clusters
(7) dropping clusters with small populations
(8) not clustering crops with small populations

1-2



d. After the training set has been clustered, it is then classified; and, for
each crop, a regression is performed between the ground truth and the num-
ber of pixels classified into that crop class.

e. Based on the r2 of the regression, the percent correctly classified, and the
time available, the analyst may repeat earlier steps with different
parameters or options, or may drop crop types being clustered in an effort
to increase the r2 and the percent correctly classified. Thus, for each
crop, a regression estimator is obtained which will predict the amount of
ground truth present in the area of interest when that area is classified.

1.3 STANDARIZED PROCEDURE
For this study, it was necessary to standardize the use of the USDA crop
estimation procedure so that alternative clustering and classifying components
could be evaluated. The following options and parameter values were
recommended through discussions with USDA analysts:
a. Specifying a priori probabilities.
b. Clustering only crop types with a minimum of 200 pure pixels available.
c. Clustering pure pixels only.
d. Removing pixels with extreme spectral values relative to others of the same

ground truth crop type.
e. Specifying a minimum and a maximum number of clusters per crop type (from 1

to 15) and a minimum cluster population (from 150 to 200 pixels).
f. Specifying separability of clusters in spectral space to be in the range of

0.6 to 0.8.
g. Specifying convergence when combining clusters to be within the range of 95

to 99 percent.

With these recommendations and a desire to choose an exact procedure, the USDA
Editor software was exercised on data provided by the USDA. For this data set,
a priori probabilities for each crop clustered were specified as the proportion
of that crop present in the training set.

1-3



Clustering was done on pure pixels only, and pixels with extreme values were
omitted (clipped) from the clustering process. One analyst performed all
clipping in this study for consistency. The clipping limits used for each crop
type for each part of this study can be found in appendix A. To ensure a
minimum of 150 to 200 pixels per cluster, the maximum number of clusters was
specified as the number of pixels divided by 100, with no more than 15 clusters
allowed. The minimum number of clusters was specified to be the maximum number
of clusters divided by 3. A separabililty of 0.75 was used and was rarely
reached before the clustering procedure stopped due to reaching the specified
minimum number of clusters. A convergence of 95 percent provided adequate
clustering without unduly increasing the computer time.

All other options in the standardized procedure were as recommended by the USDA
analysts. All files generated during this study on the USDA Editor were
archived on tape and will be available for at least 1 year. A list of these
files is presented in appendix E. Comparison of results from this standardized
procedure with the ESS Missouri analysis results are presented in section 3.
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2. DATA SET

2.1 DESCRIPTION
The Landsat data used in this study included 33 segments in northwest Missouri,
each having an area of approximately 1 square mile (259 hectares). These
segments were all contained in strata 10 (50 to 100 percent agriculture) and
had little cloud cover. Data were available for two dates: May 14 and
August 3, 1979. An additional 12 segments from the August date were available
but not analyzed because of heavy cloud cover. The counties represented in the
Missouri data set are listed in table 2-1. The ground truth proportions in the
33 analyzed segments are given in table 2-2.

TABLE 2-1.- SEGMENTS PER COUNTY IN
MISSOURI DATA SET

Number of
County segments

Daviess 5

Harrison 5

Putnam 2
Schuyl er 3
Mercer 3
Caldwell 3
Gentry 4

Sull ivan 4

Linn 5

Livingston 5
Grundy 3
De Kalb 3

Tota 1 45

2-1



1\

TABLE 2-2.- GROUND TRUTH PROPORTIONS OVER 33 SEGMENTS

Mixed Pure*
Crop Hectares Pixels Proportion Hectares Pixels Proportion

Corn 524.7 1582 0.117 211.5 651 0.101
Winter
wheat 114.0 452 .034 62.4 192 .030
Permanent
pasture 1321.5 3984 .296 821.3 2527 .392
Soybeans 1073.2 3299 .245 576.9 1713 .275
Dense
woodland 355.3 1136 .084 167.0 514 .080
Other
hay 304.5 964 .072 192.4 592 .092
Other 681.5 2059 .153 64.2 194 .030
Total 4374.7 13476 1.000 2031.5 6443 1.000
*Pure = Poorly registered, poorly reported, and border pixels removed.
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The major crops in this study are corn, soybeans, and pasture, which represent
about 12, 25, and 30 percent of the crops present in each segment, respec-
tively. Three additional crops are also studied: winter wheat (3 percent),
dense woodland (8 percent) and other hay (7 percent). About 15 percent of the
segments consisted of other crops, mainly wasteland. For a given crop, the
minimum number of pure pixels considered for analysis was 200. The crops
lumped together as "other" had well below 200, and other hay, dense woodland,
and winter wheat were marginal. The best performance (as measured by percent
correctly classified) in most cases was obtained for permanent pasture, in
which over 2500 pure pixels were available for training.

Listed in table 2-3 are the number of pure pixels present in ground truth in
each of the 33 segments used in this study, broken down by crop type. The
sample mean and sample standard deviation are also listed.

The Missouri data set provided by the USDA was available at the Bolt, Beranek,
Newman (BBN) remote processing center in Boston, where the USDA Editor software
also resided. The same Missouri data set was placed on tape and sent to the
Laboratory for Applications of Remote Sensing (LARS) at Purdue University.
Software for alternate clustering and classification used in this study was
located at LARS. The Missouri data sets at both BBN and LARS were identical.
The following information for each pixel was provided in the data set:
a. four channel values from May 14
b. four channel values from August 3
c. ESS crop code
d. segment number
e. tract and field identification
f. Landsat row and column
g. flag indicating a border pixel
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TABLE 2-3.- PURE PIXELS OF GROUND TRUTH BY SEGMENT
Segment Corn Winter Pennanent Soybeans Dense Othernumber wheat pasture woodland hay
6034 5 7 45 13 0 38
6085 .0 0 165 22 0 72
6015 31 19 30 81 0 8
6038 0 0 0 0 0 0
6098 0 0 310 0 0 0
6073 27 0 41 17 77 33
9046 0 0 99 0 47 36
6064 0 7 46 76 40 0
6065 29 3 28 1 0 15
6095 0 0 0 0 0 0

I

9061 86 0 0 183 0 0
9036 5 3 36 125 0 0
6053 0 0 40 104 4 4
6058 12 0 0 171 2 35
9057 0 0 108 17 14 45
9037 17 26 79 67 2 2
9062 8 0 251 18 30 16
9066 0 8 0 79 0 0
6045 6 0 340 13 0 0
9047 59 43 42 152 3 0
6048 53 0 7 0 62 0
9097 6 0 12 82 1 62
9096 37 0 0 26 39 28
6040 9 2 124 22 8 55
6060 0 0 0 10 3 6
6035 51 5 84 125 0 34
9016 93 0 0 85 0 0
9051 0 35 145 9 115 0
6063 22 2 31 76 16 0
6050 34 0 182 0 0 79
9052 39 19 26 137 0 0
6059 0 . 0 115 18 44 14
9017 22 13 141 46 7 10

Total 651 192 2527 1775 514 592
Sample
mean 19.7 5.8 76.6 53.8 15.6 17.9
Sample
SD* 25.2 10.8 90.1 55.8 27.3 23.4
*Standard deviation.
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2.2 PHILOSOPHY OF EXPERIMENTS
The experiments were designed to understand the performance of Editor and to
compare performance when alternative components are inserted. To motivate the
analysis, two main variables X and Y can be considered, where X is the crop
acreage derived from the classifier (or the number of classified pixels,
depending upon choice of units) and Y is the corresponding ground truth acreage
for the segment. In the current method of analysis, Y is regressed onto X, as
if X were a fixed variable. Also, the regression is developed on the training
set instead of an independent sample. Certain subtle and often overlooked
features of the classified variable X are not accounted for in the current
method of analysis. In particular, the values which X assumes are a function
of
a. The observed spectral values and ground truth labels of the segments used

to calibrate the classifier (training set). This implies that X is a
random variable since the training set is picked at random.

b. The number of observations in the training set. The larger the training
set, the less sensitive the classifier is to the random selection process
for picking the training set •

. Now let

XII XII XII
l' 2'·'" N2

be two sets of classifier-derived acreages over two sets of randomly selected
segments. Both sets of segments are assumed to have been picked from the same
population. Ideally, Yi regressed onto Xi, i = 1, •••,Nl' should be lIaboutllthe
same as Yi regressed onto Xi, i = 1, ••• ,N2• The following conjectures arise:
a. If Xi is obtained by classifying the training set and Xi is obtained by

classifying an independent set, the regressions will be different for
IIsmalllltraining sample sizes.

b. If Xi is obtained by classifying the training set and Xi is obtained by
classifying an independent set, then the Xi-values will be more closely
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correlated with the Vi-values than will be the xi-values. This point has
bearing on the relevance of the r2 values obtained by Editor and reported
by the USDA.

c. If Xii is obtained through a jackknifing procedure and Xi is obtained by
classifying an independent set, then the regressions of Yi onto Xi and Yi
onto Xi will be "about" the same. This conjecture is probably classifier
dependent and is one of the reasons why a linear classifier was selected
for study.

2.3 DESIGN OF EXPERIMENTS
In keeping with the conjectures presented in the Philosophy of Experiments
section, the design of experiments was done in three levels. The first level
consisted of training and testing on all 33 segments. This corresponds to the
current USDA estimation procedure. In the second level, the data set was
partitioned into a training set and a test set to assess the performance and
the validity of the current USDA estimation procedure. Jackknifing techniques
were used in the third level as a means of obtaining independent test sets
which were larger than those obtainable by using a single training-and-test
partitioning of the data. This experimental design was strongly influenced by
the belief that the sample of segments chosen to obtain estimates is a critical
part in the whole estimation process.

Many of the experiments were run in parallel as a means of comparing alterna-
tive components. That is, the standardized USDA procedure was first run on a
data set, and the procedure was repeated with the only change being the use of
the CLASSY clustering algorithm to generate cluster statistics which were then
inserted into the Editor system. Then a corresponding analysis was performed
using the MSE classifier software. One experiment was designed for the USDA
Editor to specifically evaluate one particular method of estimation, namely
jackknifing. A separate jackknifing experiment for the MSE classifier was
designed. The experiments are described below in further detail; and, unless
explicitly stated, all analysis is with multitemporal data.

2-6



2.3.1 TRAINING AND TESTING ON ALL 33 SEGMENTS
The current USDA method of training on a sample and developing the regressions
on the training set was performed using all 33 segments. The following
comparisons were made:
a. Comparison of unitemporal versus multitemporal - The entire estimation

process was carried out for unitemporal data and for multitemporal data
within the current Editor system. Summary statistics were collected. The
Hotelling's T2 test was used to determine if multitemporal data produced
significantly better estimates than unitemporal. This test is described in
detail in section 3.1.2.

b. Comparison of the current standarized USDA procedure versus the CLASSY
clustering algorithm - The entire estimation process was performed using
the standarized USDA procedure. The process was repeated but with CLASSY
cluster statistics inserted into the Editor system. Summary statistics
were collected. The Hotelling's T2 test was used to determine if the use
of CLASSY produced significantly better estimates on the training set than
the current USDA procedure.

c. Comparison of the current standarized USDA procedure versus the MSE
classifier - The entire estimation process was performed using theMSE
classifier software. Summary statistics were collected. The Hotelling's
T2 test was used to determine if the use of the MSE classifier produced
significantly better estimates on the training set than the current USDA
procedure.

2.3.2 TRAINING ON 25 SEGMENTS AND TESTING ON 8 SEGMENTS
The data set was divided into two sets: a training set of 25 segments used to
develop a classifier and a test set of 8 segments independent of the training
set. The classifier developed on the training set was used to classify both
the training and test sets. Regressions for the six crops of interest were
developed on the training set and also on the test set. This was carried out
with the standardized USDA procedure and again with CLASSY as a component of
the Editor system, and finally with the MSE classifier software. Summary
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statistics are presented in later sections. The following tests and
comparisons were made:
a. For each of the three classification choices, an F-test was performed to

determine if the regression line developed on the training set for a given
crop was equal to the regression line developed on the test set. (A
preliminary test for homogeneity of variance must be carried out first.)
This test indicates if the regression line developed on the training set is
extendible to the test set. A discussion of this test appears in
section 3.2.1.

b. The current USDA clustering procedure was compared with the CLASSY cluster-
ing algorithm. The Hotelling1s T2 test was performed to determine if the
use of CLASSY produced significantly better estimates on an independent set
than the USDA procedure. The estimates for the independent set were ob-
tained from the regression line, which was developed on the training set.

c. The current USDA classification procedure was compared with the MSE classi-
fication. The Hotelling1s T2 test was performed to determine if the use of
the MSE classifier produced significantly better estimates on an indepen-
dent set than the USDA procedure.

2.3.3 JACKKNIFING
Jackknifing techniques were used to simulate the procedure of training on a
sample and developing regressions on an independent set. The following
experiments were conducted.
a. Jackknifing within the Editor system

By repeating the division of the data set into training and test portions
so that all segments appear exactly once in a test group, the combined test
groups from all repetitions represent a quasi-independent test set.
Summary statistics and regressions were obtained from this quasi-indepen-
dent test set and were compared to results obtained when training and
testing on all 33 segments. Details of this jackknifing are given in a
later section.
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b. Jackknifing with the MSE classifier
The data set was divided into sets consisting of 25 and 8 segments. The
set of 25 segments was further divided into a set of 24 training segments
and a set of 1 test segment. This div}sion of the 25 segments was repeated
so that each of the 25 segments appeared exactly once as a test segment.
These test segments were combined to form a quasi-independent test set of
25 segments. The Hotelling's T2 test was performed to determine if the
regressions developed on the quasi-independent test set produced signifi-
cantly better estimates on an independent set than did the regressions
developed on the 25 segments without jackknifing. For each crop, an F-test
was performed to determine if the regression line developed on the quasi-
independent test set was equal to the regression line developed on an
independent test set. Details of this jackknifing appear in section 5.6,
Cross-Validation Procedure.

2.4 SELECTION OF TRAINING AND TEST SEGMENTS
Before training and test segments were selected, the geography, strata
boundaries, and the Landsat imagery of the area covered by the 33 segments were
studied. These segments, when plotted on a topographic map of Missouri, covered
a rectangular area roughly 100 miles (160 kilometers,) on a side. This
rectangle represented about one-eighth of the land area in Missouri. About
three-quarters of the segments were 800 feet (244 meters) in elevation. The
remaining segments were scattered around the perimeter at 1000 feet
(305 meters).

The geography was rolling. No major urban areas were nearby. A copy of the
topographic map is included in appendix B. Some cloud cover was at the edge of
the scene, but very little was over the segments. A fairly uniform color
distribution prevailed.

County maps with strata boundaries were provided by the USDA, with the 33 seg-
ments identified on them. All 33 segments were in strata 10. Very few were
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near the strata boundaries, and the segments were evenly distributed over the
counties (see table 2-1).

There were, then, two factors in the choice of training and test segments, both
related to geography. It is assumed that if soil characteristics vary over the
region, they will be most different between segments that are widely separated
geographically. Also, segments located at the extreme edges of the region were
slightly higher in elevation. Therefore, to obtain representative training
segments and representative test data, each group of segments should be
distributed uniformly over the geographic region covered by all 33 segments.

Eight independent test segments were chosen by laying out a uniform grid with
eight boxes over the topographic map. One segment from each box was randomly
selected. The remaining 25 segments constituted the training group. Listed in
tables 2-4 and 2-5 are the segment number and ground truth crops present (in
pixels) for the test and training groups, and the comparisons with all
33 segments •.. .,.

These groups were found satisfactory, since they are both fairly representative
of the total data set of 33 segments and still provide some variation.

To further validate that the 25 training segments are representative of the
entire data set, the percent of the training set correctly classified when
training with 25 segments and with all 33 segments are presented in table 2-6.
The similarity of these results are indicative that the 25 training segments
are representative.

In the Editor jackknifing experiment, it was necessary to partition the data
into 11 groups of 3 segments each. This was accomplished by laying a grid with
three boxes over the topographic map such that 11 segments fell into each box.
Three segments were then chosen randomly, one from each box. This was repeated
10 times, obtaining 11 test groups of 3 segments each. Each corresponding
training group was composed of the remaining 30 segments. Mean values for each
of the 11 test and training groups can be found in appendix D.
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TABLE 2-4.- PURE PIXELS OF GROUND TRUTH IN EIGHT TEST SEGMENTS

Segment no. Corn Winter Pennanent Soybeans Dense Other
wheat pasture woodland hay

6038 0 0 0 0 0 0
6048 53 0 7 0 62 0
6059 0 0 115 18 44 14
6098 0 0 310 0 0 0
9017 22 13 141 46 7 10
9037 17 26 79 67 2 2
9046 0 0 99 0 47 36
9052 39 19 26 137 0 0
Total 131 58 777 268 162 62
Mean of 8 16.4 7.2 97.1 33.5 20.3 7.8
Mean of 33 19.7 5.8 76.6 53.8 15.6 17.9
SO of 8 20.6 10.6 100.4 48.9 26.1 12.6
SO of 33 25.2 10.8 90.1 55.8 27.3 23.4
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TABLE 2-5.- PURE PIXELS OF GROUND TRUTH IN 25 TRAINING SEGMENTS

Segment no. Corn Winter Pennanent Soybeans Dense Other
wheat pasture woodland hay

6015 31 19 30 81 0 8
6034 5 7 45 13 0 38
6035 51 5 84 125 0 34
6040 9 2 124 22 8 55
6045 6 0 340 13 0 0
6050 34 0 182 0 0 79
6053 0 0 40 104 4 4
6058 12 0 0 171 2 35
6060 0 0 0 10 3 6
6063 22 2 31 76 16 0
6064 0 7 46 76 40 0
6065 29 3 28 1 0 15
6073 27 0 41 17 77 33
6085 0 0 165 22 0 72
6095 0 0 0 0 0 0
9061 86 0 0 183 0 0
9036 5 3 36 125 0 0
9047 59 43 42 152 3 0
9051 0 35 145 9 115 0
9057 0 0 108 17 14 45
9016 93 0 0 85 0 0
9062 8 0 251 18 30 16
9066 0 8 0 79 0 0
9096 37 0 0 26 39 28
9097 6 0 12 82 1 62
Total 520 134 1750 1507 352 530
Mean of 25 20.8 5.4 70.0 60.3 14.1 21.2
Mean of 33 19.7 5.8 76.6 53.8 15.6 . 17.9
SO of 25 26.8 11.0 87.8 57.2 27.9 25.3
SO of 33 25.2 10.8 90.1 55.8 27.3 23.4
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TABLE 2-6.- MULTITEMPORAL PERCENT CORRECTLY CLASSIFIEO RESULTS FROM
TRAINING ON 25 SEGMENTS VERSUS TRAINING ON 33 SEGMENTS

Editor CLASSY MSE classifier
Crop Train on 25 Train on 33 Train on 25 Train on 33 Train on 25 Train on 33

segments segments segments segments segments segments
Corn 74.24 72.57 77 .12 72.31 71. 36 65.61
Winter
wheat 35.46 28.76 35.73 38.05 16.90 20.13
Pennatlent
pasture 66.56 78.92 73.12 75.45 87.13 85.34
Soybeans 83.69 79.33 84.15 81.57 86.02 83.48
Dense
woodland 54.55 46.65 50.19 49.74 32.91 33.98
Other hay 32.52 22.41 32.29 26.14 2.79 1.87
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2.5 SAMPLE SIZE ESTIMATES
Table 2-7 gives the sample sizes needed to detect different amounts (10, 15,
and 20 percent) of deviation from the average ground truth at various levels of
type I error (a) and type II error (e) for each of the six crops. For each
crop and for a given amount of deviation, the sample size was obtained by
solving two simultaneous equations which relate the type I and type II errors
to the sample size and the critical value. The equations were based on the
standardized normal distribution.

TABLE 2-7.- UNIVARIATE SAMPLE SIZE ESTIMATES

Average a = 0.05 a = 0.1
Crop ground MSE 6 Percent

truth e=O.1 e=0.2 e=O.3 8=0.1 8=0.2 8=0.3
Corn 15.909 68.165 0.1 231 167 127 177 122 88

.15 103 74 57 79 54 40

.20 58 42 32 45 31 22
Winter 4.365 24.577 0.1 1104 797 608 846 580 421
wheat .15 491 355 270 376 258 187

.20 276 " 200 152 212 I145 106
Permanent 40.047 320.887 0.1 172 124 95 132 90 66
pasture .15 77 55 42 59 40 29

.20 43 31 24 33 23 17
Soybeans 32.522 128.773 0.1 105 76 58 80 55 40

- .15 47 "34 26 36 25 18
.20 27 19 15 20 14 10

Dense 10.768 83.933 0.1 620 448 341 475 326 236
woodland .15 276 199 152 211 145 105

.20 155 112 86 119 82 59
Other hay 9.228 92.370 0.1 929 670 511 711 488 354

.15 413 298 228 316 217 158

.20 233 168 128 178 122 89
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3. EVALUATION OF STANDARDIZED USDA PROCEDURE

3.1 ANALYSIS RESULTS FOR TRAINING AND TESTING ON 33 SEGMENTS
3.1.1 COMPARISON"WITH USDA RESULTS
In tables 3-1, 3-2, and 3-3 are listed the omission error, the commission
error, the residual MSE, and the r2 of the regression f~r each crop from runs
made with the standardized procedure and all 33 segments-for training (columns
headed JSC). Also included (when available) for comparison are figures provided
by the USDA from similar runs made by USDA analysts (columns headed USDA).

The percent correctly classified is equal to one minus the omission error.
From the omission and commission errors, it is apparent that the August acqui-
sition provided better results than the May acquisition. In section 3.1.2, a
multivariate statistical test was performed to determine if multitemporal data
provided significantly better estimates than the August data.

3.1.2 HOTELLING'S T2 TEST COMPARING UNITEMPORAL AND MULTITEMPORAL ESTIMATES
To compare the performance of the standardized USDA procedure using different
types of data, namely unitemporal and multitemporal, a criterion to measure the
performance must first be defined. The criterion adopted in this study is a
vector consisting of the absolute differences between the ground truth and the
regression estimate for each of the six crop types of interest. Mul.tivariate
statistical analysis techniques have been applied, because the major Objective
is to evaluate the performance of the procedures in classifying and estimating
the crop hectarage of all six crop types simultaneously. To compare the
unitemporal and multitemporal results, a test is made of the equality of the
two mean vectors of the absolute differences (vectors of means of the absolute
value of the differences.) If the hypothesis of equal mean vectors is
rejected, the type of data yielding a smaller mean vector of absolute dif-
ferences between the ground truth and the regression estimate is preferred.
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TABLE 3-1.- EDITOR MULTITEMPORAL PERFORMANCE MEASURES FOR
TRAINING AND TESTING ON 33 SEGMENTS

r2 Percent Omission Conrnission Residual
Crop correct error error MSE

JSC USDA JSC USDA JSC USDA JSC USDA JSC USDA
Corn 0.80 0.82 0.73 0.67 0.27 0.33 0.37 0.24 68.2 *
Winter
wheat .38 .52 .29 .34 .71 .66 .56 .44 24.6 *
Pennanent
pasture .79 .80 .79 .75 .21 .25 .46 .36 320.9 *
Soybeans .85 .85 .79 .78 .21 .22 .33 .23 128.8 *
Dense
woodland .62 .65 .47 .47 .53 .53 .54 .44 83.9 *
Other hay .20 .48 .22 .32 .78 .68 .60 .52 92.4 *

TABLE 3-2.- EDITOR AUGUST PERFORMANCE MEASURES FOR
TRAINING AND TESTING ON 33 SEGMENTS

r2 Percent Omission Conrnission Residual
Crop correct error error MSE

JSC USDA JSC USDA JSC USDA JSC USDA JSC USDA
Corn 0.42 0.37 0.52 0.43 0.48 0.57 0.55 0.47 197.8 *
Winter
wheat .27 .39 .34 .30 .66 .70 .68 .42 28.8 *
Pennanent
pasture .74 .75 .72 .73 .27 .27 .52 .44 391.5 *
Soybeans .75 .75 .74 .74 .26 .26 .37 .29 214.0 *
Dense
woodland .44 .44 .31 .34 .68 .66 .58 .51 125.8 *
Other hay .03 .18 .08 .12 .92 .88 .79 .73 111.4 *
*No values.
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TABLE 3-3.~ EDITOR MAY PERFORMANCE MEASURES FOR
TRAINING AND TESTING ON 33 SEGMENTS

r2 Percent Omission COl11Tlission Resi dual
Crop correct error error MSE

JSC USDA JSC USDA JSC USDA JSC USDA JSC USDA
Corn 0.07 0.35 0.26 0.18 0.74 0.82 0.76 0.58 313.4 *
Winter
wheat .01 .12 .02 .09 .98 .91 .88 .66 39.0 *
Pennanent
pasture .58 .74 .68 .77 .32 .23 .51 .44 648.9 *
Soybeans .61 .63 .67 .72 .33 .28 .52 .42 326.4 *
Dense
woodland .44 .44 .33 .24 .67 .76 .65 .53 125.2 *
Other hay .05 .20 .16 .19 .84 .81 .64 .64 109.1 *
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The hypothesis is now formulated and tested as follows:
Let

lJAl
lJA2

lJ - lJA3A -
lJA4
lJA5
lJA6

where

(1)

lJAi = the mean of the absolute difference between the ground truth and
the regressi on estimate of crop i f·.·.)mthe USDA procedure usi ng
multitemporal data,

lJBi = the mean of the absolute difference between the ground truth and the
regression estimate of crop i from the USDA procedure using unitemp-
oral data, (crop 1 is corn; crop 2 is winter wheat; crop 3 is permanent
pasture; crop 4 is soybeans; crop 5 is dense woodland; crop 6 is other
hay. )

It is desired to test
HO: lJA - lla= 0
Hl : lJA - lla to 0 (2)

It is assumed that a random sample of 33 segments was chosen. Classification
has been performed; and ground truth, classification results, and regression
estimates were obtained for each of the 33 segments. Let

YAj = ....
YA4j
....

YA5j
....
YA6j

3-4

....
YBlj
....
YB2j
....YB3j
....

YB4j
....YB5j
....
YB6j

j = l, 2, • •·,33 (3 )



where
= the ground truth of crop i in segment j

the regression estimate of the ground truth of crop i in segment j from
the USDA procedure using multitemporal data

,.,
YBij = the regression estimate of the ground truth of crop i in segment j from

the USDA procedure using unitemporal data, i = 1,···,6
To test the hypothesis, the vectors formed are

.•.
IY4j - YA4j I

..•
IYSj - YASj I

.•.
IY6j - YA6jl -

.•.
- IY4j - YB4jl

.•.
- IYSj - YBSj I

..•
IY6j - YB6jl

,.,

IY 1j - YB1j I
,.,

- IY2j - YB2j I
,.,

IY3j - YB3jl

.•.
IY 1j - YA1j I -

,.,
IY2j - YA2j I

.•.= IY3j - YA3jl -d.
J

The Hotelling's T2 testing statistic is given by
T2 = N a"si a

where

j = 1, ••• ,33 (4)

(S)

N = sample size
a = it d.

J=l J
Sd = the sample variance-covariance matrix of dj
The computed T2 = 44.8324, and T20•oS (6,32) = 17.4. Since T2 > T20•os (6,32),
we reject HO : PA - PB = 0 at the O.OS level of significance and conclude that
the mean vectors of absolute differences are not the same for multitemporal and
unitemporal data. And since
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-5.35394 0
-0.40394 0

a = -0.81182 < 0 (6)
-3.14828 0
-1.89091 0
-1.14818 0

it indicates that the regression estimates obtained from multitemporal data
seem to be closer to the ground truth for all crop types than the regression
estimates obtained from unitemporal data. It is therefore expected that
multitemporal data will produce better estimation results.

3.2 EVALUATION ON AN IND~PENDENT TEST SET
3.2.1 TRAINING ON 25 SEGMENTS AND TESTING ON 8 SEGMENTS
One of the purposes of this study was to evaluate how well a classifier and the
regression equations which were developed on the training set performed on an
independent test set. Of the 33 segments available for analysis, 8 were chosen
as a test set. The remaining 25 segments were then used in the standardized
USDA procedure to train a classifier and to develop the regression equations
for the six crops being studied. Performance measures of this classifier on
the 25 training segments and on the 8 test segments are given in table 3-4.
Also listed in this table are the r2·s (r = the correlation coefficient) and
the regression MSE's for each crop in both sets of segments. This table shows
that the training set had lower omission and commission errors for each crop
than did the test set, with the exception of other hay. Also, the training set
yielded higher r2·s than the test set, with dense woodland as the only
exception. Both dense woodland and other hay are considered minor crops in
this study. Finally, the overall percent correct is 57.70 for the training set
as compared to 42.00 for the test set.

To determine whether the regression lines fitted to the 25 segments in the
training set were appropriate for predicting ground truth in the 8 independent
test segments, a two-stage F-test was performed for each crop. This test is
constructed to determine if the regression line developed on the training set
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TABLE 3-4.- EDITOR MULTITEMPORAL CLASSIFICATION PERFORMANCE MEASURES
FOR TRAINING ON 25 SEGMENTS AND TESTING ON AN INDEPENDENT SET

25 Training segm~nts* 8 Test segmentst
Crop

r2 ~ Com- r2 ~ Com-MSE Correct Omission mission MSE Correct Omission mission
Corn 28.805 0.91 74.24 25.76 31.13 202.865 0.61 54.98 45.02 42.89
Winter wheat 21.628 .50 35.46 64.54 66.05 37.275 .00 32.97 67.03 71.15
Pennanent
pasture 176.736 .88 66.56 33.44 44.56 1268.635 .39 51.76 48.24 47.87
Soybeans 119.426 .86 83.69 16.31 31.09 395.029 .40 71.74 28.26 63.17
Dense woodland 72.595 .66 54.55 45.45 50.12 36.662 .88 27.04 72.96 55.80
Other hay 79.541 .37 32.52 67.48 71.89 52.375 .24 39.81 60.19 88.64
*Overall ~ correct = 57.70
tOverall ~ correct = 42.00



is significantly different from the regression line developed on the test
set. The structure of this test requires that the residual sum of squares for
each line be pooled to form a common variance estimate. Thus, homogeneity
tests for the error variances of the training and test sets must first be
performed. These tests are outlined below.

Assume that the linear relationship between the ground truth and the number of
pixels classified for the training set is given by

Yi = a1 + b1Xi + £rRAIN
and for the test set is given by

Yi = a2 + b2Xi + £rEST
where eTRAIN and €TEST are the random errors of the models, with variances

2 20TRAIN and 0TEST. The hypothesis for testing homogeneity of variances is
stated as:

(7)

(8)

2 _ 2
crEST - crRAIN
o~EST # ~RAIN

(9)

The testing statistic is F = MSETEST/'MSETRAIN' where MSETEST and MSETRAIN are
the residual mean square errors obtained by separate regressions on the test
set and the training set, respectively. The null hypothesis HO is rejected at
level 0.10 if F > F(0.95,6,23) = 2.51 or if F < F(0.05,6,23) = 0.260.

If the homogeneity of variances is not rejected for a crop, then the following
hypothesis is tested:

HO: training set regression line = test set regression line
H1: training set regression line ~ test set regression line

The testing statistic is

F =
SSE ALL - SSETRAIN - SSETEST

2
SSETRAIN + SSETEST

29
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where SSETEST' SSETRAIN' and SSEALL are the residual sums of squares obtained
by separate regressions on the test set, training set, and combined test and
training sets, respectively. The null hypothesis HO is rejected at level 0.05
if F > F(0.95,2,29) = 3.32. Results for these two tests for the six crops are
given in table 3-5 (page 3-11). Homogeneity of variances was rejected for the
major crops of corn, permanent pasture, and soybeans. Of the three remaining
crops, the equality of the training set regression line and the test set
regression line was rejected for the crop other hay.

In the first part of this section, F-tests were performed to determine if the
regression line developed on the training set was significantly different from
the regression line developed on the test set. These tests provided infor-
mation as to the extendibility of the area estimation procedure which is
currently being used by the USDA. In this section, an alternative method is
presented with which to gain insight into the question of this extendability.

As known from regression theory, an estimator for the model variance can be
obtained by summing the squared residuals from the regression and then dividing
this quantity by its degrees of freedom. A similar estimator is now
described. This estimator, denoted by ~2 , is a weighted average of the 8
squared residuals obtained when the regression equation from the 25 training
segments is used to predict the ground truth (y) for the 8 test segments. The
calculation is given by

where

"2 1 Jl.
a =-g-Li=l

" 2(Y. - Y.)
1 1

2
1 (Xi - ~)

1 + "25" + -2-5 ----
L (X. - X) 2
j=l J

(11)

y.
1 = ground truth hectarage for segment i in the test set,

i = 1,···,8
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..•
Y.

1

X·1

25
~J=l

2(X. - ~)
J

= estimated ground truth hectarage for segment i in the test
set using the training regression equation as a predictor,
i = 1,···,8

= number of classified pixels for segment i in the test set,
i = 1,···,8

= the mean number of classified pixels per segment in the
training set

= the corrected sum of squares for the independent variable
in the training set

1 {Xi-X)2
2'5" + 25

~ (XJ' - ~)
2

J=l
a 2

1 (X.-,,)
1 + + _1 _

'2"5" ~ (X. _ ~)2

j=l J

And ...2
+ (EY. - EY.)

1 1

(12)

It can be seen that E(~2) depends upon the training set through its variance
o~RAIN and EYi• Likewise, E(~2) depends upon the test set through its
variance o~EST and EY~. If the training set and test set share the same
re~ression line and 0TRAIN = o~EST = 02 is a c~on variance, then ...
E(02) = 0

2• No formal tests were made using 02, but for a given crop if 02 is
considerably different from the MSE of the training set, it is an indication
that o~RAIN * a~EST and/or the training set regression line is significantly
different from the test set regression line. Table 3-6 lists the MSE's of the
six crops on the training set, which are unbiased estimates of the ~RAIN's.
Also listed is ~2 for each crop. for crops for which the homogeneity of
variances was rejected in table 3-5, it appears that MSE's of the training set
are quite different from their corresponding ~2IS.
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TABLE 3-5.- EDITOR MULTITEMPORAL ANALYSIS: F-TESTS FOR
HOMOGENEITY OF VARIANCES AND EQUALITY OF REGRESSION LINES

Computed F Computed F
Crop for homogeneity for equal ity of

of variances regression lines
Corn *7.043
Winter wheat 1.723 2.66
Permanent pasture *7.178
Soybeans *3.308
Dense woodland .505 3.296
Other hay .658 t3.383
Critical values .260, 2.51 3.32
*Homogeneity of variances rejected.
tEquality of regression lines rejected.

TABLE 3-6.- EDITOR MULTITEMPORAL ANALYSIS: MEAN SQUARE ERRORS
OF THE 25 TRAINING SEGMENTS AND O2's OF THE

8 TEST SEGMENTS

Crop MSE 02
Corn 28.805 147.517
Winter wheat 21.628 43.449
Permanent pasture 176.736 1025.186
Soybeans 119.426 438.685
Dense woodland 72.595 88.132
Other hay 79.541 110.431
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3.2.2 JACKKNIFING WITH THE EDITOR SYSTEM
Ideally, it is desirable to have a large sample with which to train a classi-
fier and another large sample independent of the first with which to develop a
regression line. The advantage of having a large sample is that the sampling
variability is reduced as the sample size increases. When it is impossible to
have a large training sample as well as a large sample with which to develop
the regression line, a jackknifing procedure can be employed. The jackknifing,
which is now described, simulates the method of training a classifier on a
sample and then developing a regression on an independent sample.

The 33 segments were grouped into 11 sets containing 3 segments each. One set
of 3 segments became the test set, while the remaining 10 sets were pooled and
used to train a classifier. The test set containing three segments was then
classified. This procedure was repeated 10 more times, with each set of
3 segments being the test set exactly once, and the remaining 30 segments being
used to train a classifier. The 11 test sets were then combined, resulting in
a sample of 33 segments, each having ground truth (Y) and a classification
variable (X).

Regression equations for the 6 crops of interest were developed on this com-
bined set of 33 segments. The regression MSE's, r2's, and classification
performance measurements are given in table 3-7 for this combined set. For
comparison, the classification results obtained when all 33 segments were used
to train the classifier are also given. With only one exception, the omission
and commission error rates are higher in the jackknifed set than in the set
where all 33 segments were used in the training. Also, the r2·s are lower in
the jackknifed set. For the major crops of corn, permanent pasture, and
soybeans, the decrease in r2 is 0.15, 0.23, and 0.14, respectively. The
results of this jackknifing study indicate that the r2's reported by the USDA
are overestimated.
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TABLE 3-7.- EDITOR MULTITEMPORAL CLASSIFICATION PERFORMANCE MEASURES ON
33 SEGMENTS VERSUS PERFORMANCE MEASURES ON THE JACKKNIFED TEST SET

Training on all 33 segments* Jackknifed test sett
Crop

MSE r2=R2 % Omission Com- MSE r2 % Omission Com-
Correct mission Correct mhsion

Corn 68.165 0.80 72.57 27.43 36.68 83.106 0.75 67.50 32.50 37.51
Winter
wheat 24.577 .38 28.76 71.24 55.78 34.538 .13 23.19 76.81 74.76
Pennanent
pasture 320.887 .79 78.92 21.08 45.69 680.577 .56 62.75 3t.25 51.20
Soybeans 128.773 .85 79.33 20.67 32.66 243.650 .71 78.45 21.55 37.26
Dense
woodland 83.933 .62 46.65 53.35 53.91 92.173 .59 48.24 51.76 59.62
Other hay 92.370 .20 22.41 77 •59 60.29 113.273 .02 15.48 84.52 80.74
tOVerall % correct = 57.77

Overall % correct = 51.62



4. EVALUATION OF THE CLASSY CLUSTERING ALGORITHM

4.1 INTRODUCTION
The CLASSY clustering algorithm is an adaptive, maximum likelihood clustering
procedure developed at JSC (refs. 1 to 4). The algorithm is fundamentally a
density estimation algorithm which approximates the overall data distribution
as a mixture of multivariate normal distributions. That is, if ~ is an
observation vector and p is its probability density function, then

where
a·, = a priori probability of occurrence of class i

(13)

Pi(~I~i,Ei) = multivariate normal probability density function for class i with
mean vector ~. and covariance matrix Ei,

m = total number of classes
= full set of parameters

(i.e., {a1'·"'~' ~1'''·'!'m' El'•••,~}l
Given a set of statistically independent, unlabeled sample vectors {~j}' the
likelihood function may be formed in the following manner:

(14)

where N is the total number of samples.

So far, the assumptions and equations parallel the usual maximum likelihood
development. In using CLASSY, the additional assumption is that each value of
the parameters m and !m occurs with an a priori probability distribution
A(m'!m). This Bayesian formulation of the problem is taken to avoid the
degenerate situation of increasing the likelihood by generating more and more
clusters with smaller and smaller values of aj. The practical limit of this
process is that each class will be associated with only one data point.
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In practice, the a priori probability A(m'!m) has been chosen as

for !m € '\nj
otherwise

(15)

where
ci = a constant containing normalizing factors over !m space
6 = overall normalization constant
Rm = finite region of !m space corresponding to allowable values for the

parameters

The objective of CLASSY, then, is to determine the discrete parameter m and the
continuous parameter vector !m so as to maximize the following function.

L({~j}.m·!m} = A(m'3m) j~ ~1 alPl(!jl~l'!li (16)

The value of m and !m which maximize equation (16) speCify a set of dis-
tributions called clusters.

Many approaches may be taken to maximize equation (16). The approach chosen in
CLASSY is to interleave the maximum likelihood iteration [designed to maximize
L({~j},m'!m) with respect to the continuous parameter vector !]with a discrete
split, join, and combine process [designed to maximize L( {~j},m'!m) with
respect to the discrete parameter m]. Although the theoretical convergence
properties of this procedure have not been examined, it is expected that, by
alternating these two techniques, values of m and! corresponding to at least a
local maximum of L({~j},m'!m) will be determined. Since the splitting and
combining techniques operate around each existing cluster, and the statistics
for hypotheses concerning different numbers of clusters are maintained
separately, it has been observed that the final local maximum will often be
global.
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Necessary conditions for a maximum of L({~j},m'!m)' assuming a fixed number of
classes m, are well known [see Ouda and Hart (ref. 5) and Wolfe (ref. 6)] and
are given by the following equations:

(17)

(18)

(19)

(20)

where p(il~k'!m) is the posterior probability of class i, given the kth sample
vector and the values of the parameters; and ai, ~i' and Li' i = l···,m are the
elements of !m.

""

CLASSY uses a direct functional iteration to maximize equations (19) and (20);
that is, estimates for ~i and L. are used in the right-hand side to produce

- 1
improved estimates on the left-hand side. Estimates for the a priori class
probabilities, ai' are computed using an iteration scheme which has proved to
converge more rapidly than the simple functional iteration using equation
(18). The scheme used is described in reference 4.

The optimization of L([~j},m'!m) with respect to the discrete parameter m
generates hypotheses concerning the number of clusters and the subsequent
testing of these hypotheses using a likelihood ratio test. At certain points
in the process of maximum likelihood iteration, it is possible to generate a
hypothesis concerning the fit of a given cluster to the data; namely, either
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that the data are better represented by two clusters rather than one (a split
hypothesis) or that the data are better represented by combining the given
cluster with another cluster (a join hypothesis). Each cluster is periodically
checked throughout the program to see if either a split or a join hypothesis
seems reasonable. Measures of skewness and kurtosis are compared against
values expected for a single, normal distribution to see if a split hypothesis
should be considered. A measure of cluster similarity is used to determine if
a join hypothesis is appropriate.

Clusters may be eliminated as the result of a likelihood ratio test or if their
estimated a priori class probability in the mixture falls below a set thresh- '
old. Details concerning the split, join, eliminate operations as well as the
operation of the algorithm in a general may be found in references 2, 3, and 4.

4.2 DESCRIPTION OF PROCEDURE
In order to evaluate the CLASSY clustering algorithm as a replacement for the
clustering algorithm currently used in the Editor system, two different
experiments were performed.

In the first of these experiments, CLASSY was used to cluster the pure pixels
for each of the 6 test crops in the 33 Missouri segments. Unlike the
standardized USDA procedure, outlying pixels and poorly registered fields were
not removed before clustering. The resultant cluster statistics for each crop
were transferred to the Editor system, and all pixels in the 33-segment area
were classified using Editor1s maximum likelihood classifier. Regression
equations relating the classified pixels to the ground truth hectarage were
developed for each crop. The performance measures for classification and
regression, including the percent correctly classified, the omission and
commission errors, and the r2 and MSE for regression are given in table 4-1.

In the second experiment, CLASSY was used to cluster pure pixel data for each
crop contained in 25 of the available 33 Missouri segments. The remaining 8
segments were reserved as an independent test set for use in evaluating the
classifier and regression equations developed using the 25 training segments.
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TABLE 4-1.- CLASSY MULTITEMPORAL PERFORMANCE MEASURES FOR
TRAINING AND TESTING ON 33 SEGMENTS*

Crop MSE r2 ~ Omission Com-
Correct mission

Corn 23.33 0.9308 72.31 27.69 29.47
Winter
wheat 22.07 .4427 38.05 61.95 58.35
Permanent
pasture 239.79 .8435 75.45 24.55 45.50
Soybeans 85.95 .8877 81.57 18.43 34.01
Dense
woodland 62.53 .7195 49.74 50.26 51.50
Other hay 59.45 .4845 26.14 73.86 63.05
*Overall ~ correct = 58.10.
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The purpose of this experiment was to determine if the performance of the
hectarage estimation system on an independent data set was comparable to its
performance on the training data set. The percent correctly classified, the
omission and commission errors of the classifier developed on the 25 training
segments and those from the 8 test segments are given in table 4-2. Similarly,
the MSE and r2 for the regression equations developed separately on the 25
training segments and on the 8 test segments are also given in this table. The
last column in table 4-2 is an unbiased estimate of the error variance in
applying the regression equation developed on the 25 training segments to the 8
test segments. This is the same statistic described in section 3.2.1.

In section 4.3, a statistical comparison is made of the hectarage estimates
obtained when using CLASSY to cluster all 33 segments with the corresponding
estimates using the standardized USDA procedure. In section 4.4, a similar
statistical comparison is made for the estimates obtained for the eight
independent test segments. Finally, in section 4.5, a test is made to
determine whether the regression line developed on the 25 training segments is
statistically different from a line fitted to the 8 test segments.

4.3 COMPARISON OF CLASSY AND THE STANDARDIZED USDA PROCEDURE
To compare the performance of CLASSY and the standardized USDA procedure, the
criterion defined in section 3.1.2 and the Hotelling's T2 test on the mean
vectors of absolute differences have been used.
Let ~1

~2
~ - ~3 (21)C -

~4
~5
~6

where ~Ci is the mean of the absolute difference between the ground truth and
the regression estimate of crop i from the CLASSY procedure.
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TABLE 4-2.- CLASSY MULTITEMPORAL CLASSIFICATION PERFORMANCE MEASURES FOR TRAINING
ON 25 SEGMENTS AND TESTING ON AN INDEPENDENT SET

25 Training segments* 8 Test segmentst
Crop

R2 ,., Com- R2 ,., Com- "2MSE Correct Omission mission MSE Correct Omission mission 0

Corn 24.06 0.9245 77.12 22.88 30.48 313.48 0.3966 55.97 44.03 48.04 227.
70
Winter
wheat 18.22 ,.5808 35.73 64.27 67.34 24.48 .3432 41.76 58.24 53.09
18.24
Permanentpasture 230.88 .8437 73.12 26.88 44.66 1162.13 .4449 64.20 35.80 48.84 848.
42
Soybeans 112.10 .8721 84.15 15.85 31.43 186.40 .7148 70.43 29.57 59.70 175.
24
Dense
woodland 49.45 .7681 50.19 49.81 42.44 52.15 .8270 19.15 80.85 55.56 138.
13
Other hay 53.90 .5760 32.29 67.71 62.13 54.47 .2081 26.21 73.79 87.32 101.
68
;Overall ,.,correct = 59.62.

Overall,., correct = 45.38.



(22)

(24)

We now test:
HO: ~A - ~ = 0
Hi : ~A - ~ 1; 0

where ~A is defined in section 3.1.2. The Hotelling's T2 testing procedure for
the above problem is similar to that described in section 3.1.2. The computed
T2 is 44.1959, and T20•05(6,32) is 17.4. Since T2 > T20•05(6,32), we
reject HO: ~A - ~C = 0 and conclude that the mean vectors of absolute
differences are not the same for the two procedures. And since

1.69696 0
0.36333 0

a = 2.39 > 0 (23)
0.37909 0
0.99424 0
2.08121 0

indicates that the regression estimates obtained by using CLASSY seem to be
closer to the ground truth than the regression estimates obtained by using the
standardized USDA procedure, it is believed that the CLASSY clustering
algorithm performs better than the clustering algorithm used in the
standardized USDA procedure.

4.4 COMPARISON OF CLASSY AND THE STANDARDIZED USDA PROCEDURE BY WEIGHTED MEAN
VECTORS

Another testing was done on the mean vectors of weighted absolute differences
so that crops with larger ground truth proportions contributed more in
distinguishing the difference between CLASSY and the standardized USDA
procedure. The hypothesis is formulated and tested as follows:

HO : ~l- ~ = 0

* *
Hi : lJA - ll( 1; 0
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where
* *~Al ~1
* *~A2 ~2
* *

* ~A3 * ~3
~ - * . ~= *A - ~A4 ,

~4
* *~A5 ~5
* *~A6 ~6

*and ~Ai = the mean of the weighted absolute difference between the ground
truth and regression estimate of crop i (weighted by its ground
truth pixel proportion) from the USDA procedure

*~Ci = the mean of the weighted absolute difference between the ground
truth and regression estimate of crop i (weighted by its ground
truth pixel proportion) from the CLASSY procedure

The computed T2 is 20.0823, and T~.05(6,32) is 17.4. Since
T2 > T~.05(6,32), we reject HO: ~A- ~~= 0 at the 0.05 level of significance
and conclude that the weighted mean vectors of absolute differences are not the
same for the two procedures. And the following

0.446021 0
0.026101 0

~= 0.88508 > 0 (25)
0.281399 0
0.169621 0
0.149436 0

indicates again that the CLASSY clustering algorithm seems to perform better
than the clustering algorithm used in the current USDA procedure.

4.5 COMPARISON OF CLASSY AND THE USDA STANDARDIZED PROCEDURE ON AN INDEPENDENT
TEST SET

In this study, the 33 segments were divided into two sets. One set consisting
of 25 segments is called the training set; the remaining 8 segments form the
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test set. The 25 training segments were used in training the classifier and in
obtaining the regression coefficients. The regression line was then applied to
the eight test segments to determine how well the line predicts crop hectarage
using an independent set. This study has been completed for both CLASSY and
the standardized USDA procedure. To compare the performance of CLASSY and the
standardized USDA procedure on an independent test set, a similar Hotelling's
T2 test as in the previous section has been done on the eight segments.

The computed r2 is 11.035, and T6.05(6,7) is 405.92. With this sample of 8
segments, since T2 < T~.05(6,7), there is not enough statistical evidence to
reject the hypothesis that the mean vectors of absolute differences between
ground truth and the regression estimate ~re the same for the two procedures on
an independent test set. A larger independent test set would be more
appropriate because the critical value T~(p,N - 1) decreases rapidly as the
sample size N increases.

4.6 COMPARISON OF TRAINING AND TEST SET REGRESSION LINES
In order to determine if the regression line fitted to the 25-segment training
data was appropriate for the 8 independent test segments, a two-stage F-test,
as described in section 3.2, was performed. The results are presented in
table 4-3. Corn and permanent pasture did not pass the homogeneity of variance
test. The test for equality of regression lines indicates that the regression
lines are different only for dense woodland and other hay. However, the fact
that corn and permanent pasture failed the homogeneity of variance test indi-
cates that different regression models exist for the training and the test sets
for these crops.
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TABLE 4-3.- CLASSY MULTITEMPORAL ANALYSIS: F-TESTS FOR
HOMOGENEITY OF VARIANCES AND EQUALITY OF REGRESSION LINES

Computed F Computed F.
Crop for homogeneity for equal ity of

of variances regression lines
Corn *13.03
Winter wheat 1.34 0.09
Permanent pasture *5.03
Soybeans 1.66 0.10
Dense woodland 1.05 t6.82
Other hay 1.01 t3.61
Critical values .260, 2.51 3.32
*Homogeneity of variances rejected.
tEquality of regression lines rejected.
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5. EVALUATION OF THE MEAN SQUARE ERROR CLASSIFIER

5.1 BACKGROUND
The MSE classifier (ref. 7) is an algorithm intended to exploit the Bayes
classification rule, which assigns an observation ~ € Rm to one of m
populations, w1,w2'···'wm, in which the lowest conditional average loss is
incurred in so assigning~. This conditional average loss for population j is
given by

lJ • (x) = A c •. p (00. Ix )
J - i~ lJ 1-

(26)

where Cij is the cost incurred in assigning ~ to Wj when it actually belongs in
wi' and p(wil~) is the posterior probability that ~ is an observation on 00;.

If a zero cost is assumed for correct classification and equal costs of one for
incorrect classification, then the optimal classification rule which minimizes
total expected loss also minimizes the probability of error in classification.
In this context, the cost function Cij can be expressed as

c .. = (1 - 6 •• ) (27)lJ lJ
where

6··=1ifi=J·lJ

6·· = 0 if i ; jlJ
and

lJj(~) = it (1 - 6ij)P(wil~)

= 1 - p(w.lx)
J -Thus x is assigned to wi if

lJ;(~) < lJj(~) ; j = 1,2,· ••,m, j "*;

or equivalently,
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The particular algorithm used in this experiment was developed by S. G. Thadani
(ref. 7).

For a given observation ~,m loss functions are estimated where, for each j,
~j(~)is approximated by

(30)

where

i~ an r-dimensional vector whose components are linearly independent functions
of~, and

Ta. = (a.l,···,a. )-J J Jr

is a parameter vector determined so that the following MSE is minimal:

(31)

The expectation with respect to the overall mixture density function is denoted
by ET{·}.

*It has been shown [ref. 7) that the vector!j that minimizes equation (31) is
the same vector that minimizes

where Et{·} denotes the expectation with respect to the conditional probability
density function p(~IWt); additionally, if we define

2 N€Iajl 1 m t A

= N + II ~ .1: [~J·(!J·'~i)W , =1 t
t

(32)

(33)

j = 1,··.,m
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where ~i is the i1th training sample from class w1 and l~jl2 = ~J~j' then if
1

E1[fi(~)T!i(~)] < ~ ; i = 1, ···,r
1= 1,··· ,m

it can be shown that

1im ~(a.) = ~(a.)-J "t-JN+ao

The approach, then, is to minimize M~(aj) with respect to ~j
reasonably large number of training samples. If Ni represents
training samples from class i and N = N1 + ••• + Nm, then

(34)

(35)

and to use a
the number of

Where the €Ir term assures that the sum is positive definite.

(36)

Since equal costs of 1 for misclassification are assumed, this minimizing
vector can be expressed as

(37)

5.2 DESCRIPTION OF PROCEDURE
The procedure used in testing and evaluating the MSE classifier on the USDA
data set consisted of the following four tasks:
a. A determination of the most appropriate form of the classifier.
b. A simulation, using the MSE classifier, of the standardized USDA procedure

in which the classifier is trained on all the data for which ground truth
is available.

c. A performance evaluation of the MSE classifier on an independent test set.
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d. An investigation of the efficacy of using a cross-validation procedure to
produce a different regression estimator.

A detailed discussion of each of the four tasks and the results follows.

5.3 DETERMINATION OF THE CLASSIFIER
This task addressed the issues of whether pure pixels only should be used in
training the classifier and whether the terms of either a linear or quadratic
function should be the components of !(~). Separate computer runs were made in
which pure pixels and then all pixels were used, respectively, for training.
Additional runs were made using, first, a linear form of !(~)and then a
quadratiC form. The conclusion reached was that a classifier trained on all
the pixels in the crops of interest and using a quadratic form of the vector
function f(~)produced the best classification results.

Since no clustering is done in the algorithm, valuable information is probably
lost in restricting the training set to pure pixels. In each subsequent task
described, reference to training the classifier will assume the use of all
pixels in the training set and the terms of a quadratic function as entries of
f(~)·

5.4 SIMULATION OF THE STANDARDIZED USDA PROCEDURE
In this task, the MSE classifier was trained on the crops of interest in the
33 segments and then used to classify all pixels in the 33 segments. For each
crop, the absolute values of the residuals were compared to the corresponding
USDA results using a Hotelling's T2 test for multivariate data. This test was
applied again on the same data with the exception that, for each segment, the
absolute values of the residuals were weighted by the proportions of the crops
of interest in that segment. A discussion of the results of both tests
follows. Following this discussion is table 5-1. This table reflects the
statistics collected over the 33 segments.
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5.4.1 COMPARISON OF THE MEAN SQUARE ERROR CLASSIFIER AND THE STANDARDIZED USDA
PROCEDURE

The Hotelling's T2 test, as described in section 3.1.2, has been performed to
compare the results from the MSE classifier with the results from the
standardized USDA procedure. Stated below are the testing procedure and the
inferences.
Let lil1

lil2
llo= lil3 (38)

lil4
lil5
lil6

where ~Di is the mean of the absolute difference between the ground truth and
the regression estimate of crop i from the MSE classifier.

We test HO: ~ = 0~A -
(39)

H1: ~A - lil ;t 0
where ~A ts defined in section 3.1.2.

Using the ground truth and regression estimates on the 33 segments, the
computed T2 is 21.777 and T~.05(6,32) is 17.4. Since T2 > T~.05(6,32), we
reject HO: ~A - ~D = 0 at the 0.05 level of significance and conclude that the
mean vectors of absolute differences are not the same for the two procedures.
In this case, however, we have

0.52919
-0.27372

a = -1.17319
-0.34008
-0.67899
-4.15128
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Thus, it cannot be concluded that one procedure is better than the other
because the elements in a do not have the same sign.

5.4.2 COMPARISON OF MEAN SQUARE ERROR CLASSIFIER AND STANDARDIZED USDA
PROCEDURE BY WEIGHTED MEAN VECTORS

Similar testing, as in section 4.4, was done on the mean vectors of weighted
absolute differences. We test

(41)

* * *where ~A is defined earlier and ~D is defined in a similar manner as ~A.

The computed T2 is 8.2857 and T~.05{6,32) is 17.4. Since T2 < T~.05{6,32),
there is not enough statistical evidence to reject the hypothesis that the
weighted mean vectors of absolute differences are the same for the two
procedures.

TABLE 5-1.- MSE CLASSIFIER MULTITEMPORAL PERFORMANCE MEASURES FOR
TRAINING AND TESTING ON 33 SEGMENTS*

Crop MSE r2 % Correct Omission Comission
Corn 51.90 0.8460 65.61 0.3439 0.2412
Winter 24.63 .3781 20.13 .7987 .4013
wheat
Pennanent 361.16 .7643 85.34 .1466 .5001
pasture
Soybeans 128.02 .8478 83.48 .1652 .3573
Dense 95.15 .5733 33.98 .6602 .4765
woodland
Other 115.38 .0005 1.87 .9813 .4706
hay
*Overall % correct = 57.04.
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5.5 MEAN SQUARE ERROR CLASSIFIER PERFORMANCE ON AN INDEPENDENT TEST SET
The MSE classifier was trained on the same 25 segments previously referred to
as the training set, and all pixels in the 33 segments were classified. The
regression equation determined by the 25 points obtained in the training
process was used to predict the ground truth hectares in the 8 test segments.
A Hotelling's T2 test was applied on the mean vectors of absolute differences
of the ground truth and regression estimates on the 8 test segments. The test
is now described.

5.5.1 COMPARISON OF THE MEAN SQUARE ERROR CLASSIFIER AND THE STANDARDIZED USDA
PROCEDURE ON EIGHT TEST SEGMENTS

When the performance of the MSE classifier was compared to that of the
standardized USDA procedure on an independent test set, a Hotelling's T2 test
on the mean vectors of the absolute differences was conducted on a set of eight
segments. The computed T2 was 25.1924 and T~.05(6,7) was 405.92. Since T2 <
T~.05(6,7), there is, again, not enough evidence to reject the hypothesis. A
larger independent test set is needed.

5.5.2 F-TEST FOR EQUALITY OF TRAINING AND TEST REGRESSION LINES
The two-stage F-test described in section 3.2 was used to determine if the
regression line fitted through the 25 pOints using the MSE classifier was
adequate to predict the ground truth in the 8 test segments. The results are
presented in table 5-2. Corn and permanent pasture failed the homogeneity of
variances test. The test for equality of the regression lines was not rejected
for any crop which passed the homogeneity of variances test. Following
table 5-2, table 5-3 displays performance statistics compiled on the 25
training segments and on the 8 test segments.

5-7 - .
~



TABLE 5-2.- MSE CLASSIFIER MULTITEMPORAL ANALYSIS: F-TESTS FOR
HOMOGENEITY OF VARIANCES AND EQUALITY OF REGRESSION LINES

Computed F Computed FCrop for homogeneity for equality of
of variances regression lines

Corn *11.896
Winter wheat 1.600 1.240
Permanent pasture *4.009
Soybeans 1.939 1.516
Dense woodland .3979 1.724
Other hay .6094 2.332
Critical values .260, 2.51 3.32
*Homogeneity of variances rejected.
tEquality of regression lines rejected.
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TABLE 5-3.- MSE CLASSIFIER MULTITEMPORAL PERFORMANCE MEASURES FOR
TRAINING ON 25 SEGMENTS AND TESTING ON AN INDEPENDENT SET

Training on 25* Testing on 8t
Crop

r2 % Com- r2 % Com- A2MSE Correct Omission miss ion MSE Correct Omission mission a

Corn 26.37 0.92 71.36 28.64 24.22 313.74 0.40 54.73 45.27 45.85 221.60
Winter
wheat 22.09 .49 16.90 83.10 44.74 35.38 .05 32.79 67.03 36.17 34.12
Permanent
pasture 316.55 .79 87.13 12.87 46.13 1269.16 .39 76.46 23.53 47.64 1028.37
Soybeans 109.97 .87 86.02 13.98 32.43 213.21 .67 74.78 25.22 59.10 209.35
Dense
woodland 93.93 .56 32.91 67.09 49.55 37.38 .88 18.59 81.41 53.85 67.74
Other hay 111.99 .07 2.79 97.21 59.32 68.24 .01 2.91 97.09 70.00 59.96
*Overall % correct = 44.69.
tOverall % correct = 49.24.

\
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5.6 CROSS-VALIDATION PROCEDURE
The current USDA procedure is to develop a regression estimator by fitting a
line to the points obtained from the training data. The objective of the
fourth and final task was to determine if the estimate of the ground truth
hectares in the eight test segments could be improved by using a different
regression line based on a procedure referred to as cross-validation. Of the
25 training segments, 1 segment is left out, and the MSE classifier is trained
on the remaining 24 segments. The omitted segment is then classified as if it
represented an independent test set. This process is repeated for each of the
25 segments, thus producing 25 points through which a regression line is
fitted. The 8 test segments are then classified using the MSE classifier
developed on all 25 segments, and the ground truth hectares for these 8
segments are predicted from the regression line.

Two tests were conducted on the results. The first was the two-stage F-test
for the equality of the regression line determined in the cross-validation
procedure and the regression line fitted to the eight test segments. These
results are presented in table 5-4. It is noted that, in the cross-validation
procedure, the hypothesis for equality of variances was rejected for woodlands
in addition to the corn and pasture crops previously rejected in the noncross-
validation procedure.

The final question to settle was which of the two procedures, cross-validation
or noncross-validation, yielded a regression line which best predicted the
ground truth for an independent set. The Hotelling1s T2 test previously
discussed was used on the eight test segments. In this application,

~I - ~II = 0
(42)

where
~I = mean vector of absolute differences between the ground truth and the

regression estimate on an independent set using cross-validation in
obtaining the fitted line on the 25 points.
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~II = mean vector of absolute differences between the ground truth and the
regression estimate on an independent set without cross-validation.

The computed T2 is 9.9528 and T~.05(6,7} is 405.92. Since T2 < T~.05(6,7}, we
conclude that there is not enough evidence to reject the hypothesis. A larger
independent test set is needed.

TABLE 5-4.- MSE CLASSIFIER MULTITEMPORAL ANALYSIS:
F-TESTS FOR HOMOGENEITY OF VARIANCES AND EQUALITY

OF REGRESSION LINES IN CROSS-VALIDATION PROCEDURE

Computed F Computed F
Crop for homogeneity for equal ity of

of variances regression lines
Corn *8.478 t
Winter wheat 0.854 0.412
Permanent pasture *2.980 t
Soybeans 1.070 2.10
Dense woodland *.255 t
Other hay .553 1.18
Critical values .260, 2.51 3.32
*Homogeneity of variances rejected.
tEquality of regression lines rejected.
lNo values.
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6. CALIBRATION REGRESSION APPROACH

6.1 INTRODUCTION
Statistical methods have often been illustrated with beautiful examples without
adequately emphasizing the abstract ideas that underlie the methods; that is,
ideas essential to correct statistical thinking. The result has been that
certain problems with similar objectives appear amenable to identical
statistical solutions when, in fact, intrinsic differences exist which alter
considerably the details of their solutions. It is often the case that the
practitioner is interested in assessing the value of some quantity which is
impracticable to assess or impossible to observe directly in a given instance,
the estimation being performed with the aid of a relationship between the
quantity whose value is sought and another whose value can be determined
directly. The curve-fitting procedure usually adopted depends on the
additional assumption that the values of the independent·variables are known
exactly (without error) - an assumption often passed by without emphasis. This
simplification of problems without explicit mention of the fact fosters
misconceptions that are carried over into analysis of data, a particularly bad
misconception being that the variable whose value is .to be estimated
automatically assumes the role of the dependent variable. The calculation and
use of dosage-response curves to estimate dosage constitute an example. The
dosage-response curve should be evaluated from a series of observations, with
dosage as the independent variable, and the curve then used to estimate unknown
dosages from observable responses.

To illustrate the aforementioned in more detail, assume that a linear relation
prevails between U and V

(43)
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which may be written in the equivalent forms
V=a+au

where
a = -ao/a2
a = -a/a2

U=y+6V
where
y = -ao/ai
o = -a2/ai

(44)

(45)

A common impression regarding the principles of curve-fitting seems to be: If
Aone is interested in estimating V from U, then take V = a + bU as the estimate

of equation (44); if one were fitting by the method of least squares, the a and
b that minimize E(Vi - Vi)2 would be fou~d. On the other hand, if one is
interested in estimating U from V, then U = c + dV is to be fitted, the values

Aof c and d being chosen so as to make U a good fit in terms of the deviations
A

(Ui - Ui). It does not seem to be generally realized that the fitting should
be done in terms of the deviations which actually represent "error." Thus,
when the research worker selects the U-values in advance, holds U to these
values without error, and then observes the corresponding V-values, the errors
are in the V-values. So, even if the researcher is interested in using
observed values Vo of V to estimate U, he should nevertheless fit V = a + bU

Aand then use the inverse of this relation to estimate U; i.e., U = (VO - a)/b.
let us examine this from the viewpoint of the theory of least squares.
Consider the case where the values of U are selected (or adjusted) by the
research worker, and the corresponding values of V are found by observation.
One can minimize E(Vi - Vi)2 and E(Ui - Ui)2, thereby obtaining the two lines,
respectively:

'I = a + bU

U=c+dV

6-2
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E(Vi - Vi)2 minimized
ANOVA I

Total variability of V's about
their mean: E(Vi - V)2
Reduction effected by (46):

bE (U. - 0)( V. - V)
1 1•..

Deviation about V
2E (V. - V) - bE (U. - O){ V. - V)

1 1 1
•..2

= E (V. - V.)
1 1

E(Ui - Ui)2 minimized
ANOVA II

Total variability of U's about
their mean: E(Ui - 0)2
Reduction effected by (47):

dE(U. - O)(V. - V)
1 1•..

Deviation about U
2E(U. - 0) - dE(U. - O)(V. - V)

1 1 1
•..2

= E(U. - U.)
1 1

The ANOVA tables are interpreted as follows. On the left, E(Vi - V)2 gives a
measure of the observed variability of the V-values. The second row of.ANOVA I
gives the portion of the observed variability of the V-values that can be
attributed to the dependence of V on U, and the last row indicates the mag-
nitude of the portion of E(Vi - V)2 that must be attributed to "error" (this
portion has been minimized by the fitting process). In ANOVA II, on the other
hand, E(Ui - 0)2 represents the variability in the chosen values of U which
resulted from the way in which the researcher selected them, and it should be
noted that the corresponding values observed for V have in no way entered into
their determination. Consequently, the apparent dependence of the U on the V,
measured by the second row of ANOVA II, is a spurious dependence, and the last
row of this table cannot be interpreted as being a measure of the "error" in
the U-values, since it is that portion of the variability of the U-values that
cannot be accounted for by the variability of the V-values. Briefly stated,
when the values of U have been selected by the researcher and the corresponding
V-values observed, the line obtained by minimizing E(U. - U.)2 is meaningless;

1 1
and, accordingly, equation (46) is the only correct estimate of the postulated
linear relationship between U and V. Therefore, if it is desired to reason•..
from V to U, this must be done by means of U = (VO - a)/b.

One example is to calibrate an instrument, say a pressure gauge. Assume that
the increase in gauge marking is linearly proportional to the increase in
pressure. To calibrate the gauge, one subjects it to two or more controlled
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pressures (U) and notes the gauge markings (V). Using these data, the
parameters are calculated, and the gauge is calibrated. The gauge is then used
to determine unknown pressure (U) simply by reading the marking Va and
obtaining U = (Va - a)/b.

The calibration problem is very general. Consider the problem of estimating
the ground truth crop-type acreage of an area segment from the acreage obtained
by classifying the Landsat data. To establish the relation between the two
acreages, a number of segments was selected. The ground truth acreages of
these segments were recorded and held as constants. The segments were then
processed by a classification algorithm, and the classification acreages were
obtained. In view of the fact that the ground truth acreages were controlled
and the classification acreages depended upon spectral observations which can
be regarded as chance occurrences and, therefore, are relatively imprecise, it
seems only appropriate to consider the ground truth as the independent variable
and classification acreages as the dependent variable. The ground truth
acreage (U) of a new segment is then estimated from observing the

Aclassification acreage (Va) of that segment by the equation U = (Va - a)/b.

More detail on the application of this calibration model to the crop-type
acreage estimation problem will be given in the next section.

6.2 DESCRIPTION OF NEW REGRESSION ESTIMATOR
This section provides a brief description of the regression method currently
being used by the USDA to estimate the ground truth crop-type acreages. Denote
the ground truth acreage by U and the acreage obtained from classifying the
Landsat data by V. Using the sample of 33 segments, U is regressed onto V.

Ground truth acreages (Ui) and their corresponding classification acreages (Vi)
are obtained for ~ach of the 33 segments. The relation between U and V is then
assumed to be

6-4
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where E~, representing error, is distributed N(0,aI2). The least squares
estimat~rs d of 6 and c of y obtained by minimizing E(Ui - Ui)2 are

E(U. - O)(V. - V)d - 1 1
- E(V. - V)Z

1

c=O-dV

(49)

(50)
The regression line is given by U = c + dV, and the ground truth acreage is,..
estimated by U = c + dV.

Although under this model (hereafter referred to as the current model) this
estimator is unbiased with minimum variance (in the class of all unbiased
linear estimators), the model does not seem to be appropriate. The reason is
that, in the current model, the classification acreage (V) was considered as
the fixed variable and the ground truth acreage (U) as the dependent variable;
whereas, actually, the values of the ground truth acreages (U) were controlled
and held as constants and only the values of the classification acreage (V)
were observed and subject to error.

The calibration model is now introduced. Regressing the classification acreage
(V) onto the ground truth acreage (U) gives,

i = 1, ···,n (51)

where Ei' representing error, is distributed as N(O,~). The least square,.. 2estimators a of a and b of a obtained by minimizing E(Vi - Vi) are

E(Ui - O)(Vi - V)
b = ------ ZE(U. - 0)

1

a = V - bO
The regression line is

V = a + bU
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Given a classification acreage V, the ground truth acreage is estimated by
U = V - a (55)1 b

AAnother estimator under this model, U2 = c + dV, will also be considered where
A A

C and d are defined earlier. Note that U2 and U, though having the same form
c + dV, are two entirely different estimators because they are obtained under

A Atwo different models. For instance, U2 is not an unbiased estimator (U is
unbiased) because the classification acreages (V's) are no longer considered
fixed constants under the calibration model.

We will now restrict our attention to the calibration model, which seems more
appropriate than the current model in estimating the ground truth crop-type

A Aacreages. The properties of the two calibration estimators U1 ana U2 are given
in the next section.

6.3 THEORETICAL PROPERTIES OF THE TWO CALIBRATION ESTIMATORS
Under the calibration model

V. = a + eu. + E., " i = 1, ···,n (56)

where Ei is distributed as N(O,a2), u1 is a maximum likelihood estimator and
gives a readily interpreted analysis of variance. It may be noted here that

A

the mean, variance, and MSE of U1 = (V - a)/b are infinite, since there is a
nonzero probability that b may be zero. The mean, variance, and MSE of

A

U2 = c + dV are finite for n ~ 4. However, it can be shown, with the help of
Tchebycheff's inequality, that the probability of b lying in an interval that
contains very small values, including zero, can be made very small by making
E(Ui - 0)2 large, provided lalel is not large. This can be done by increasing
n and choosing values of Ui that are not very close to each other. The
expressions given below should be considered as corresponding to the
distribution truncated for the value of b very close to zero.
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Let Uo be the quantity to be estimated and let
n 2

~ (Ui - 0)
2 1=1

o =U n - 1

1Then, to order n'

var (U ) = 0
2 [n + 1 +

1 7 n

6-7
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(60)

(61)
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From equations (59) and (62), it is evident that both estimators are biased,
A Abut U1 is asymptotically unbiased whereas U2 is not.

Alim bias (U ) - a (65)n- 1 -

A 2
lim bias (U2) a (0 - Uo) (66)=

e2
a~en-

However, both biases vanish at the point Uo = a and may be small when Uo lies
very close to O.

A

Berkson (ref. 9) has shown that when la/el is small, the asymptotic MSE of U1
is smaller than U2 except when Uo lies very near to 0. Moreover, U1 is

"consistent w~ereas U2 is not. "saw (ref. 9) showed that, when Uo lies very
close to 0, U2 is closer than U1 to Uo; he fu~ther showed that other estimators
can be obtained that may do even better than U2 in a much smaller interval. He

Athus found the use of U2 to be unappealing on this ground.

Applying this calibration model to the ground truth, crop-type acreage estima-
tion problem, a2 and e were first estimated using the data on the 33 segments.

A A

Table 6-1 displays the two calibration estimators U1 and U2 for each of the six
crops. Using the estimates of a2 and e and the equations given earlier, bias

A A A "(U1), bias (U2), MSE (U1), and MSE (U2) were calculated for each of the six
crops. These data are presented in table 6-2. It is clear that the magnitude

A A A

of bias (U1) is smaller than the magnitude of bias (U2), and MSE (U1) will be
"smaller than MSE (U2) if UO' the quantity we wish to estimate, is not very

close to the sample mean O.
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TABLE 6-1.- CALIBRATION ESTIMATORS U1 AND U2

Crop

Soybeans

Corn

Permanent
pasture
Dense
woodland
Winter
wheat

Other hay

.•.
U1

U""1= V - 7.2214 = -7 5633 + 1 0473V0.9548 • •

U1 = V ~.i5~~09= -7.6519 + 1.3191V

U1 = V ~.i~i~319 = -34.8554 + 1.3137V

U""1= V - 4.0353 = -5 9614 + 1 4773V
0.b/b9 • •

U.•. = V - 0.9228 = -2 0411 + 2 2119V
1 U.4~21 • •

6-9

.•.
U2 = -1.4261 + 0.8870V

""U2 = -2.8899 + 1.0523V

""U2 = -19.1698 + 1.0386V
.•.U2 = 0.3375 + 0.9211V

""U2 = 1.9412 + 0.8366V
.•.U2 = 4.8692 + 1.6913V



m
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"-TABLE 6-2.- BIAS AND MSE OF U1 and U2
Uo: quantity to be estimated

R2 A •.
Crop Bias (U1) Bias (U2) MSE (U1) MSE (U2 )

Soybeans 0.8469 0.0058 (UO - 32.5) 0.1505 (32.5 - UO) 159.3 + O.OO~R :32.5 - Uo)2 113.5 + 0.0257 (32.5 - Un)2

Corn .7978 .0082 (UO - 15.9) .1995 Cl5.9 - Uo) 90.1 + 0.00A2 (15.9 - UO)2 56.7 + 0.0432 (15.9 - Uo)2

Permanent .7906 .0085 (Uo - 40.0) .2067 (40.0 - UO) 428.6 + 0.00A5 (40.0 - Uo)2 264.6 + 0.0462 (40.0 - Uo)?pasture
Dense .6235 .0195 (Uo - 10.8) .3751 ClO.R - UO) 146.6 + 0.0195 (10.R - UO)2 54.7 + 0.1446 ClO.8 - UO)2woodland

Winter wheat .3782 .0530 (UO - 4.36) .6240 (4.36 - Un) 77.4 + 0.0530 (4.36 - UO)2 9.7 + 0.3933 (4.36 - Uo)2

Other hay .1991 .1298 (Uo - 9.2) .8041 (9.2 - Uo) 659.3 + 0.1298 (9.2 - Uo)2 19.9 + 0.6500 (9.2 - Uo)2



7. CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS
With regard to the standardized USDA procedure used in this study, it seems
clear that the l~ultitemporal data produce significantly better estimates than
those obtained using unitemporal data. In addition, it is clear that the cur-
rent practice of evaluating the classifier and developing the regression on the
same data set used to train the classifier can lead to optimistic performance
estimates. With the possible exception of winter wheat and dense woodland,
both of which had small populations, performance measures calculated using an
independent test set and similar measures calculated using a cross-validation
approach were uniformly worse than the same measures calculated on the training
set. It also seems clear that the regression equation developed on the train-
ing data may not be appropriate for the test data. All crops tested, except
winter wheat and dense woodland, showed differences in the regression models
for lines calculated on a training set and on an independent test set.

The CLASSY clustering algorithm, when substituted for the current USDA cluster-
ing method, produced improved estimates. The estimates were significantly
better than the standardized USDA procedure when testing and training were done
on all 33 segments. The performance measures for the 33 segments are summarized
in table 7-1.

The independent test set of eight segments was not large enough to allow the
detection of any significant difference between the procedure using CLASSY and
the standardized USDA procedure; however, the performance measures, as listed
in table 7-2, indicate an improvement when using CLASSY clustering.

It is worthwhile to note that this improvement in performance was obtained
despite the fact that CLASSY requires no decisions from an analyst concerning
the number of clusters, separability thresholds, or other arbitrary parameters.
In addition, CLASSY was operating with data for which the outlying observations
had not been removed. Such observations were removed in the course of
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TABLE 7-1.- COMPARISON OF MULTI TEMPORAL PERFORMANCE MEASURES FOR
TRAINING AND TESTING ON 33 SEGMENTS

.
Editor* CLASSyt MSE Classffiert

Crop
r2 I Com- r2 I Com- r2 I Com-MSE Correct ~fssion mission MSE Correct OIlIission mission MSE Correct I)nission mission

Corn 68.11 0.80 72.57 0.27 0.37 23.33 0.93 72.31 0.2R 0.29 51.9 0.85 65.61 0.34 0.24
Winter
wheat 24.58 .38 28.76 .71 .56 22.07 .44 38.05 .62 .58 24.63 .38 20.13 .80 .40
Permanent
pasture 320.89 .79 78.92 .21 .46 239.79 .84 75.45 .25 .46 361.16 .76 85.34 .15 .50
Soybeans 128.77 .85 79.33 .21 .33 85.95 .89 81.57 .18 .34 128.02 .85 83.48 .17 .36
Dense
woodland 83.93 .62 46.65 .53 .54 62.53 .72 49.74 .50 .52 95.15 .57 33.98 .66 .48
Other hay 92.37 .20 22.41 .78 .60 59.45 .48 26.14 .74 .63 115.38 .00 1.R7 .98 •47
*Overall I correct • 57.77.
tOverall , correct • 58.10.
tOverall , correct· 57.04.
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TABLE 7-2.- COMPARISON OF MULTITEMPORAL PERFORMANCE MEASURES
ON AN INDEPENDENT TEST SET

USDA Editor* ClASSyt MSE C1assi fierl
Crop 02 r2 'I; ~is- COlllllis- ~2 r2 'I; Omis- COlllllis- ~2 r2 'I; Omis- COlllll1s-

Correct sion sion Correct sion sion Correct sion sion
Corn 147.52 0.61 54.98 45.02 42.89 227.70 0.40 55.97 44.03 48.04 221.60 0.40 54.73 45.27 45.85

Winter
wheat 43.45 .00 32.97 67.03 71.15 18.24 .34 41.76 58.24 53.09 34.12 .05 32.79 67.03 36.17
Permanent
pasture 1025.19 .39 51.76 48.24 47.87 848.42 .44 64.20 35.80 48.84 1028.37 .39 76.46 23.53 47.64
Soybeans 438.69 .40 71.74 28.26 63.17 175.24 .71 70.43 29.'l7 59.70 209.35 .67 74.78 25.22 59.10
Dense
woodland 88.13 .88 27.04 72.96 55.80 138.13 .R3 19.15 80.85 55.56 67.74 .88 18.59 Rl.41 53.85
Other hay 110.43 .24 39.81 fiO.19 88.fi4 101.68 .21 26.21 73.79 87.32 59.96 .01 2.91 97.09 70.00
*Overa11 ~ correct ~ 42.00.
tOvera11 ~ correct = 45.38.
lOvera11 ~ correct = 49.24.



executing the standardized procedure. This represents another source of
subjective analyst input not needed when using CLASSY.

The MSE classifier did not produce significantly better hectarage estimates
than the standardized USDA procedure when evaluated on either the training set
or the independent test set. However, this classifier showed less sensitivity
to the training/test degradation discussed earlier. This is evidenced by the
fact that the hypothesis of equality of regression lines fitted to the training
and test data sets was accepted for all crops except corn and permanent
pasture, which failed the homogeneity of variances test. Also, the overall
percent correct on the independent test set decreased least when using the MSE
classifier. This greater extendibility might be expected due to the fewer
parameters required to be estimated in using this classifier.

The calibration approach to regression points out a fundamental problem in the
current regression model and suggests an alternative which has several
theoretical advantages.

7.2 RECOMMENDATIONS
Several recommendations seem appropriate at the conclusion of this study.
First, the use of CLASSY clustering in place of the current Editor clustering
algorithm is recommended. CLASSY seems to offer a tangible improvement to the
current Editor system in terms of increased performance and decreased analyst
interaction.

Also, the study seems to indicate that the regression estimator may be
improved. Use of a simpler classifier might make regression more extendible,
and improved performance is expected using the calibration regression
approach. Unfortunately, this issue is not clearly decided at this time. The
recommendation is that additional research to improve regression/proportion
estimation be conducted. This should include actual tests of the calibration
approach as well as other alternative approaches. Such approaches include a
regression model in which both ground truth and classification acreages are
considered random and the use of direct proportion estimates. In an
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operational setting, it is recommended that jackknifing be used to obtain more
realistic performance estimates.

A final recommendation is that any future work be conducted with a larger data
set, if possible. The sample size estimates reported in section 2.2 as well as
our own experience in making the various tests indicate that the sample size of
the Missouri data set is only marginally sufficient if testing is carried out
on all the training data. The data set is not sufficiently large to achieve
significant test results if it is divided into training and test portions. The
sample size estimates reported in section 2.3 should serve as a guide in
selecting future data sets and in designing future experiments.
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APPENDIX A
CLIPPING LIMITS OF RADIANCE VALUES
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TABLE A-1.- CORN CLIPPING LIMITS

Channels
Data 2 4 6 8type

Min. Max. Min. Max. Min. Max. Min. Max.
Standardized procedure

August 12 19 42 71 *- *- *- *-
May *- *- *- *- 25 45 24 60
Mul titemporal 12 19 42 72 24 44 26 61

Independent test set procedure
August 12 19 43 69 *- *- *- *-
May *- *- *- *- 24 47 24 55
Mul titemporal 12 19 43 68 22 47 24 57

Jackknifing training sets
Multitemporal

only
1 12 19 43 73 21 47 24 62
2 12 19 43 70 23 45 24 61
3 12 19 43 70 23 44 24 56
4 12 19 42 70 24 44 32 61
5 12 20 41 73 24 46 24 61
6 12 21 41 73 23 45 24 61
7 12 19 41 70 23 45 24 61
8 12 19 41 71 24 42 24 61
9 12 19 41 73 24 44 24 56

10 12 19 41 73 24 44 24 61
11 12 19 41 70 24 44 24 61

*For unitemporal data, there are only four channe1 values.
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TABLE A-2.- WINTER WHEAT CLIPPING LIMITS

Channels
Data 2 4 6 8type

Min. Max. Min. Max. Min. Max. ·Min. Max.
Standardized procedure

August 19 33 36 65 *- *- *- *-
May *- *- *- *- 15 30 52 82
Multitemporal 19 33 33 57 0 29 52 84

Independent test set procedure
August 18 32 34 56 *- *- *- *-
May *- *- *- *- 14 30 56 83
Mul titemporal 19 32 34 56 14 30 59 83

Jackknifing training sets
Multitemporal

only
1 15 36 30 58 14 32 51 84
2 18 32 34 58 14 29 52 80
3 18 33 34 57 14 29 56 79
4 18 33 35 57 14 29 55 80
5 15 33 35 58 14 35 51 84
6 16 34 34 57 14 30 59 84
7 15 33 34 58 16 31 54 78
8 17 33 34 58 14 29 55 80
9 18 33 34 58 14 29 55 80

10 18 33 34 58 14 29 52 80
11 18 32 30 58 14 29 55 83

*For un1temporal data, there are only four channel values.
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TABLE A-3.- PERMANENT PASTURE CLIPPING LIMITS

Channels
Data 2 4 6 8type

Min. Max. Min. Max. Min. Max. Min. Max.
Standardized procedure

August 0 26 30 73 *- *- *- *-
May *- *- *- *- 16 35 45 103
Mul titemporal 0 26 28 74 0 34 43 94

Independent test set procedure
August 12 27 38 73 *- *- *- *-
May *- *- *- *- 14 35 41 88
Mul titemporal 12 27 38 72 12 34 41 87

Jackknifing training sets
Multitemporal

only
1 12 26 31 75 12 39 41 94
2 12 26 31 76 13 36 43 87
3 12 24 33 72 9 35 18 98
4 12 26 31 76 9 37 18 104
5 12 28 31 77 9 42 18 103
6 12 28 33 76 9 37 18 104
7 12 26 33 76 9 38 18 104
8 12 26 32 76 9 35 18 103
9 12 26 33 76 9 34 18 102

10 12 26 30 76 9 35 18 104
11 12 27 37 78 9 38 18 104

*For unitemporal data, there are only four channel values.
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TABLE A-4.- SOYBEANS CLIPPING LIMITS

Channels
Data 2 4 6 8type

Min. Max. Min. Max. Min. Max. Min. Max.
Standardized procedure

August 0 22 47 99 *- *- *- *-
May *- *- *- *- 23 48 31 65
Mul titempora1 0 22 50 98 25 48 28 62

Independent test set procedure
August 12 21 48 105 *- *- *- *-
May *- *- *- *- 22 47 28 65
Mul titemporal 12 24 44 105 21 47 28 63

Jackknifing training sets
Multitemporal

only
1 11 23 47 98 21 48 28 63
2 11 23 46 101 22 44 28 64
3 11 23 46 98 23 47 28 64
4 11 23 47 105 22 45 28 65
5 11 24 47 98 18 48 28 67
6 11 23 47 105 15 47 28 72
7 11 22 39 105 22 46 29 64
8 11 22 49 98 22 45 28 61
9 11 22 46 98 23 45 28 65

10 11 22 47 98 24 46 30 63
11 12 23 47 98 24 47 28 65

*For unitemporal data, there are only ~our channel values.
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TABLE A-5.- DENSE WOODLAND CLIPPING LIMITS

Channels
Data 2 4 6 8type

Min. Max. Min. Max. Min. Max. Min. Max.
Standardized procedure

August 0 23 43 69 *- *- *- *-
May *- *- *- *- 14 28 54 72
Mul titemporal 10 23 44 68 0 30 51 73

Independent test set procedure--
August 10 19 48 67 *- *- *- *-
May *- *- *- *- 16 27 53 74
Mul titemporal 10 19 48 70 15 28 54 74

Jackknifing training sets
Multitemporal

only
1 10 24 42 70 14 28 51 74
2 10 22 42 70 14 29 51 72
3 10 22 42 67 14 30 52 74
4 10 22 42 70 14 28 50 74
5 10 24 43 68 14 29 52 74
6 10 24 42 70 14 29 52 74
7 10 20 47 70 14 28 55 74
8 10 22 45 68 14 29 54 74
9 10 24 42 70 14 29 52 74

10 11 24 43 70 14 29 52 72
11 10 24 44 70 14 30 54 74

*For unitemporal data, there are only four channel values.
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TABLE A-6.- OTHER HAY CLIPPING LIMITS

Channels
Data 2 4 6 8type

Min. Max. Min. Max. Min. Max. Min. Max.
Standardized procedure

August a 25 38 68 *- *- *- *-
May *- *- *- *- 15 33 56 91
Mul titempora 1 13 27 38 68 a 32 56 91

Independent test set procedure
August 13 28 37 68 *- *- *- *-
May *- *- *- *- 13 32 54 99
Mul titemporal 13 26 38 69 12 32 49 100

Jackknifing training sets
Mul titempora 1

only
1 11 28 37 68 12 32 52 92
2 11 27 37 68 12 32 50 100
3 13 27 33 75 12 32 50 90
4 12 28 38 68 12 32 50 100
5 11 28 37 69 14 32 50 93
6 11 29 37 75 12 32 50 100
7 11 28 33 68 12 33 49 100
8 14 28 37 67 13 29 56 91
9 13 28 33 68 12 32 50 98

10 11 24 39 68 12 31 50 93
11 11 28 39 68 12 32 50 90

*For unitemporal data, there are only four channel Yalue~.
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APPENDIX B
MAP OF MISSOURI WITH SEGMENT LOCATIONS
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APPENDIX C
NUMBER OF CLUSTERS GENERATED



TABLE C-1.- NUMBER OF CLUSTERS GENERATED -
TRAINING AND TESTING ON ALL 33 SEGMENTS

Crop JSC* USDAt CLASSY CLASSY
(pure) (mixed)

Corn 2 7 6 7

Winter
wheat 1 5 2 1
Permanent
pasture 5 15 7 6

Soybeans 5 10 5 8

Dense
woodland 1 7 3 4

Other hay 1 7 4 5
*At BBN.
tOn III iac.
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APPENDIX D
MEAN PURE GROUND TRUTH PIXELS PER SEGMENT

FOR JACKKNIFED TRAINING AND TEST SETS



C
I•.....

TABLE D-1.- JACKKNIFING PROCEDURE - MEAN PURE GROUND TRUTH PIXELS
PER SEGMENT IN THE 11 TRAINING AND TEST SETS

Training/ Corn Winter wheat Permanent St>ybeans Dense Other hay
test sets pasture woodland

Train Test Train Test Train Test Train Test Train Test Train Test
1 21 12 6 9 76 80 55 39 17 0 16 39
2 21 9 6 0 73 117 59 6 15 26 19 11
3 21 9 6 3 78 58 57 26 14 29 18 17
4 19 30 6 1 83 12 49 103 17 0 20 0
5 21 4 6 0 79 49 49 97 16 7 17 28
6 21 8 5 11 73 110 54 55 16 11 19 6
7 18 39 5 14 71 130 54 55 15 22 20 0

8 20 17 6 0 80 45 55 43 16 16 19 6
9 17 48 6 1 81 28 52 73 16 13 18 13
10 20 19 5 12 72 119 56 28 13 44 17 26
11 20 20 5 11 75 94 52 67 15 17 19 8
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APPENDIX E
ARCHIVED FILES

listed below are the file naming conventions used in naming files created by
Editor.

FRAME.NAMES list of Landsat scenes used
TASK2 33 segments split into two groups, 25 for training and 8

for testing
TASK3 jackknifing procedure using Editor
No task number training and testing done on all 33 segments
CLASSY CLASSY clustering algorithm used instead of Editor

clustering
TRAIN training set file
TEST test set file
MAY file using May acquisition only
AUG file using August acquisition only
MTEMP or BILL file using both acquisitions
SEGTOT or SGT segment total file
EST or ESP or ESTPAR estimated parameter file
STAT statistics file
ISTAT inverted statistics file
PACK automatically packed file
CAT categorized file
SCAT list of files for scattergramming
TBl or TABLE table file
CLIPPED clipped file
APRIOR or PUR prior probabilities specified

E-1



N-GRPS N clusters
SEGS list of segment numbers
NB all pixels available
-NB border pixels removed
CORN corn pixels only
PERMANENTPASTURE
or PASTURE permanent pasture pixels only
DENSEWOODLAND or
WOODS dense woodland pixels only
OTHERHAY or HAY other hay pixels only
WINTERWHEAT or WHEAT winter wheat pixels only
SOYBEANS soybean pixels only
Examples:
TASK3/TRAIN/5/PACK.-CORN/CLIPPED is a packed file of clipped corn pixels used

as training data in the fifth of 11 jackknifing runs. (There are 30
segments of corn pixels in this file.)

BILL/WOODS.SGT is the segment totals file for crop dense woodland using
multitemporal data when testing and training on all 33 segments.

TASK2/TEST/CLASSY/CAT. is the categorized file resulting from classification of
the 8 test segments after CLASSY was used to cluster the 25 training
segments.
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